在这个教程中,我们将学习如何用DataParallel来使用多 GPU

通过 PyTorch 使用多个 GPU 非常简单。你可以将模型放在一个 GPU:

1
2
device = torch.device("cuda: 0")
model.to(device)

然后可以复制所有的张量到GPU上:

1
mytensor = my_tensor.to(device)

请注意,调用my_tensor.to(device)返回一个GPU上的my_tensor副本,而不是重写my_tensor

你需要把它赋值给一个新的张量并在GPU上使用这个张量

在多GPU上执行正向和反向传播是自然而然的事。然而,PyTorch 默认将只是用一个GPU

你可以使用DataParallel让模型并行运行来轻易的在多个GPU上运行你的操作

1
mytensor = net.to(device)

这是这篇教程背后的核心,我们接下来将更详细的介绍它

导入和参数


导入 PyTorch 模块和定义参数

1
2
3
4
5
6
7
8
9
10
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Parameters 和 DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

设备( Device ):

1
2
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

如果GPU可用,则会输出

1
cuda:0

虚拟数据集


要制作一个虚拟(随机)数据集,你只需实现__getitem__

1
2
3
4
5
6
7
8
9
10
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)

简单模型


作为演示,我们的模型只接受一个输入,执行一个线性操作,然后得到结果。然而,你能在任何模型(CNN,RNN,Capsule Net等)上使用DataParallel

我们在模型内部放置了一条打印语句来检测输入和输出向量的大小。请注意批等级为0时打印的内容

1
2
3
4
5
6
7
8
9
10
11
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())

return output

创建一个模型与数据并行


这是本教程的核心部分

首先,我们需要创建一个模型实例和检测我们是否有多个GPU

如果我们有多个GPU,我们使用nn.DataParallel来包装我们的模型

然后通过model.to(device)把模型放到GPU上

1
2
3
4
5
6
7
8
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)

model.to(device)
print(torch.cuda.device_count())

输出为(因为我的笔记本电脑只有一块3060,所以GPU的总数是1)

1
1

运行模型


现在我们可以看输入和输出张量的大小

1
2
3
4
5
for data in rand_loader: 
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())

输出为

1
2
3
4
5
6
7
8
In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

结果


如果没有GPU或只有1个GPU,当我们对30个输入和输出进行批处理时,我们和期望的一样得到30个输入和30个输出,但是若有多个GPU,会得到如下的结果

2个GPU

若有2个GPU,将看到

1
2
3
4
5
6
7
8
9
10
11
12
13
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3个GPU

若有3个GPU,将看到

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8个GPU

若有8个GPU,将看到

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

总结


DataParallel自动的划分数据,并将作业顺序发送到多个GPU上的多个模型

DataParallel会在每个模型完成作业后,收集与合并结果然后返回给你

官方的例程请参考:MULTI-GPU EXAMPLES